Abstract
Rising temperatures and more frequent and severe droughts are driving increases in tree mortality in forests around the globe. However, in many cases, the likely trajectories of forest recovery following drought-related mortality are poorly understood. In many fire-suppressed western U.S. forests, management is applied to reverse densification and restore natural forest structure and species composition, but it is unclear how such management affects post-mortality recovery. We addressed these uncertainties by examining forest stands that experienced mortality during the severe drought of 2012-2016 in California, USA. We surveyed post-drought vegetation along a gradient of overstory mortality severity in paired treated (mechanically thinned or prescribed-burned) and untreated areas in the Sierra Nevada. Treatment substantially reduced tree density, particularly in smaller tree size classes, and these effects persisted through severe drought-related overstory mortality. However, even in treated areas with severe mortality (>67% basal area mortality), the combined density of residual (surviving) trees (mean 44trees/ha) and saplings (mean 189saplings/ha) frequently (86% of plots) fell within or exceeded the natural range of variation (NRV) of tree density, suggesting little need for reforestation intervention to increase density. Residual tree densities in untreated high-mortality plots were significantly higher (mean 192trees/ha and 506saplings/ha), and 96% of these plots met or exceeded the NRV. Treatment disproportionately removed shade-tolerant conifer species, while mortality in the drought event was concentrated in pines (Pinus ponderosa and P.lambertiana); as a consequence, the residual trees, saplings, and seedlings in treated areas, particularly those that had experienced moderate or high drought-related mortality, were more heavily dominated by broadleaf ("hardwood") trees (particularly Quercus kelloggii and Q.chrysolepis). In contrast, residual trees and regeneration in untreated stands were heavily dominated by shade-tolerant conifer species (Abies concolor and Calocedrus decurrens), suggesting a need for future treatment. Because increased dominance of hardwoods brings benefits for plant and animal diversity and stand resilience, the ecological advantages of mechanical thinning and prescribed fire treatments may, depending on the management perspective, extend even to stands that ultimately experience high drought-related mortality following treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.