Abstract

Drone applications are becoming increasingly common in the arena of forest management and forest inventories. In particular, the use of photogrammetrically derived drone-based image point clouds (DIPC) in individual tree detection has become popular. Use of an area-based approach (ABA) in small areas has also been considered. However, in-situ field measurements of sample plots substantially increase the cost of small area forest inventories. Therefore, we examined whether small-scale forest management inventories could be carried out without local field measurements. We used nationwide and regional ABA models for stem volumes fitted with airborne laser scanning (ALS) data to predict stem volumes using corresponding metrics calculated from DIPC data. The stem volumes were predicted at the cell level (15 × 15 m) and aggregated to test plots (30 × 30 m). Height metrics for the dominant tree layer from the DIPC data showed strong correlations with similar metrics computed from the ALS data. The ALS-based models applied with DIPC metrics performed well, especially if the ABA model was fitted in the same geographical area (regional model) and the inventory units were disaggregated to coniferous and deciduous dominated stands using auxiliary information from Multi-source National Forest Inventory data (root mean square error at 30 × 30 m level was 13.1%). The corresponding root mean square error associated with the nationwide ABA model was 20.0% with an overestimation (mean difference 9.6%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call