Abstract
Fires are considered a threat to the world with all its components and sectors. Recently, it is noticeable an increase in these fires that hit many countries, especially in Lebanon which is considered a country, rich in forests. A forest fire can be naturally caused by either global warming or high temperature. On the other hand, it may be caused by man-made via factories and glass waste. Fires cause great damage to the environment and may lead to human death. Unfortunately, the fire that broke out in AL-Qoubaiyat and Tyre in Lebanon, have been witnessed and caused great damage to the environment, human losses, etc. In this study, a study of fire risk management for those two study areas, will be analyzed using two types of data (Landsat-8 and Sentinel-2) for AL-Qoubaiyat case study, whereas it will be between (Landsat-7 and Sentinel-2) for the Tyre case study. The Analysis will be done by using the Normalized Burn Ration (NBR), Differenced Normalized Burn Ration (NBR) along with all type of required atmospheric corrections. According to our study, it was found advisable to monitor fire risk management using Sentinel-2 L2A data since the atmospheric correction is already performed on it but for L1C data the Sen2Cor python must be used to apply atmospheric correction. Furthermore, the Sentinel-2 L2A data analysis gave more precise results than Landsat-8 by about 2% in Sour case study and 5.7 % in AL-Qoubaiyat case study. Hoping that this method will help in tracking fires, disaster risk reduction, and help in classifying burn severity accompanied with calculating the area corresponding to each class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.