Abstract

This letter evaluates the biomass-retrieval error in pine-dominated stands when using high-spatial-resolution airborne measurements from fully polarimetric L-band radar and airborne laser scanning sensors. Information on total above-ground biomass was estimated through allometric relationships from plot-level field measurements. Multiple-linear-regression models were developed to model relationships between biomass and radar/lidar data. Overall, lidar data provided lower estimation errors (17.2 t·ha-1, 28% relative) when compared with radar data (30.3 t·ha-1, 61% relative). However, for the 30-100 t·ha-1 biomass range, the relative error from radar-based models was only 9% higher than that from lidar-based models. This suggests that high-spatial-resolution radar data could provide fundamentally similar results to lidar for some biomass intervals. This is an important finding for large-scale biomass estimation that needs to rely upon satellite data, as there are no lidar satellites planned for the foreseeable future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.