Abstract

ABSTRACTSix fillers from forestry wastes (wood, bark, cones and needles from young pine trees, kraft lignin, and recycled paper sludge from industry wastes) were incorporated into polyurethane (PU)‐based foams prepared via free‐rise pouring method. Variable filler contents (1, 5, and 10 wt %) and NCO/OH ratios (0.6, 0.9, and 1.2) were investigated. A simple mixture (1:3) of castor oil and crude glycerin (byproduct from biodiesel production) was used as biobased polyol. The foam composites were investigated through spectroscopy, morphological, mechanical, and hygroscopic analyses. The addition of fillers decreased water uptake and yielded rigid PU systems with more homogenous cell structure. The 1% and 5% reinforcement wood were the most effective among the studied compositions, with better mechanical and hygroscopic performance, probably due the higher compatibility of the wood with the PU system, which promote urethanic bonds between filler and isocyanate, as indicated by wet chemical results and micrographs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45684.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.