Abstract

ABSTRACT Monitoring changes in carbon stocks through forest biomass assessment is crucial for carbon cycle studies. However, challenges in obtaining timely and reliable ground measurements hinder creation of the spatially continuous maps of forest aboveground biomass density (AGBD). This study proposes an approach for generating spatially continuous maps of forest aboveground biomass density (AGBD) by combining Global Ecosystem Dynamics Investigation (GEDI) LiDAR-based data with open-access earth observation (EO) data. The key contribution of the study lies in the systematic evaluation of various model configurations to select the optimal model for AGBD generation. The evaluation considered various model configurations, including predictor sets, spatial resolution, beam selection, and sensitivity thresholds. We used a Random Forest model, trained through five-fold cross-validation on 80% of the total data, to estimate AGBD in the Indian forest region. Model performance was assessed using the 20% independent test dataset. Results, using Sentinel-1 and 2 predictors, yielded R2 values of 0.55 to 0.60 and RMSE of 48.5 to 56.3 Mg/ha. Incorporating forest and agroclimatic zone attributes improved performance (R2: 0.59 to 0.69, RMSE: 42.2 to 53.3 Mg/ha). The selection of the top 15 predictors, which favoured features from Sentinel-2, DEM, forest attributes, and agroclimatic zones, and GEDI data with sensitivity >0.98, yielded the optimal model with an R2 of 0.64 and RMSE of 46.59 Mg/ha. The results underscore the significance of incorporating attributes like forest and agro-climatic zones and the need for an optimal model selection considering predictor types and GEDI shot characteristics. The top-performing model is validated in Simdega, Jharkhand (R2: 0.74, RMSE: 39.3 Mg/ha), demonstrating the methodological potential of this approach. Overall, this study emphasizes the methodological prospects of integrating multi-source open-access EO data to produce spatially continuous aboveground biomass (AGB) maps through data fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call