Abstract
Network slicing has emerged as a pivotal concept in 5G systems, allowing mobile operators to build isolated logical networks (slices) on top of shared infrastructure networks. Within a network slice, several Service Function Chains are usually deployed on a best-effort premise. Nevertheless, this approach does not guarantee the availability of enough infrastructure resources to accommodate the uncertain and time-varying slice resource demands.This paper investigates two adaptive slice resource provisioning methods accounting for the evolution with time of the slice resource demands. A probabilistic guarantee of meeting the slice resource requirements can be obtained, while being robust against uncertainties. The myopic approach accounts for the past demands when provisioning the current demands, while the foresighted approach accounts for both past and future demands. These two methods lead to MILP problems. Their performance is compared with a quasi-static method, where provisioning is agnostic of the past and future demands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.