Abstract

With the advancement of image acquisition devices and social networking services, a huge volume of image data is generated. Using different image and video processing applications, these image data are manipulated, and thus, original images get tampered. These tampered images are the prime source of spreading fake news, defaming the personalities and in some cases (when used as evidence) misleading the law bodies. Hence before relying totally on the image data, the authenticity of the image must be verified. Works of the literature are reported for the verification of the authenticity of an image based on noise inconsistency. However, these works suffer from limitations of confusion between edges and noise, post-processing operation for localization and need of prior knowledge about an image. To handle these limitations, a noise inconsistency-based technique has been presented here to detect and localize a false region in an image. This work consists of three major steps of pre-processing, noise estimation and post-processing. For the experimental purpose two, publicly available datasets are used. The result is discussed in terms of precision, recall, accuracy and f1-score on the pixel level. The result of the presented work is also compared with the recent state-of-the-art techniques. The average accuracy of the proposed work on datasets is 91.70%, which is highest among state-of-the-art techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call