Abstract
The trace detection and forensic analysis of black powders and black powder substitutes, directly from wipe-based sample collections, was demonstrated using infrared thermal desorption (IRTD) coupled with direct analysis in real time mass spectrometry (DART-MS). Discrete 15 s heating ramps were generated, creating a thermal desorption profile that desorbed more volatile species (e.g., organic and semivolatile inorganic compounds) at lower temperatures (250-400 °C) and nonvolatile inorganic oxidizers at high temperatures (450-550 °C). Common inorganic components of black powders (e.g., sulfur and potassium nitrate) as well as the alternative and additional organic and inorganic components of common black powder substitutes (e.g., dicyandiamide, ascorbic acid, sodium benzoate, guanidine nitrate, and potassium perchlorate) were detected from polytetrafluoroethylene-coated fiberglass collection wipes with no additional sample preparation. IRTD-DART-MS enabled the direct detection of intact inorganic salt species as nitrate adducts (e.g., [KClO4+NO3]-) and larger clusters. The larger ion distributions generated by these complex mixtures were differentiated using principal component analysis (PCA) of the mass spectra generated at two points during the thermal desorption profile (low and high temperatures), as well as at high in-source collision-induced dissociation. The PCA framework generated by the analysis of the two black powders and five black powder substitutes was used to classify samples collected from a commercial firecracker containing both flash powder and black powder. The coupling of IRTD-DART-MS and multivariate statistics demonstrated the powerful utility for detection and discrimination of trace fuel-oxidizer mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.