Abstract
Abstract. Tropospheric ozone in East Asia is influenced by the transport of ozone from foreign regions around the world. However, the magnitudes and variations in such influences remain unclear. This study was performed to investigate the influences using a global chemical transport model, GEOS-Chem, through the tagged ozone and emission perturbation simulations. The results show that foreign ozone is transported to East Asia (20–60∘ N, 95–150∘ E) mainly through the middle and upper troposphere. In East Asia, the influence of foreign ozone increases rapidly with altitude. In the middle and upper troposphere, the regional mean concentrations of foreign ozone range from 32 to 65 ppbv, being 0.8–4.8 times higher than its native counterpart (11–18 ppbv). Annually, ∼60 % of foreign ozone in the East Asian middle and upper troposphere comes from North America (5–13 ppbv) and Europe (5–7 ppbv), as well as from foreign oceanic regions (9–21 ppbv). Over the East Asian tropospheric columns, foreign ozone appears most in spring when ozone concentrations in the foreign regions are high and the westerlies are strong and least in summer when the South Asian High blocks eastward foreign ozone from reaching East Asia south of 35∘ N. At the East Asian surface, the annual mean of foreign ozone concentrations is ∼22.2 ppbv, which is comparable to its native counterpart of ∼20.4 ppbv. In the meantime, the annual mean of anthropogenic ozone concentrations from foreign regions is ∼4.7 ppbv, half of which comes from North America (1.3 ppbv) and Europe (1.0 ppbv). Seasonally, foreign ozone concentrations at the East Asian surface are highest in winter (27.1 ppbv) and lowest in summer (16.5 ppbv). This strong seasonality is largely modulated by the East Asian monsoon (EAM) via its influence on vertical motion. The large-scale subsidence prevailing during the East Asian winter monsoon (EAWM) favours the downdraft of foreign ozone to the surface, while widespread convection in the East Asian summer monsoon (EASM) blocks such transport. Interannually, the variation in foreign ozone at the East Asian surface is found to be closely related to the intensity of the EAM. Specifically, the stronger the EAWM is in a winter, the more ozone from North America and Europe reaches the East Asian surface because of the stronger subsidence behind the East Asian trough. In summer, ozone from South and South-east Asia is reduced in strong EASM years due to weakened south-westerly monsoon winds. This study suggests substantial foreign influences on ozone at the East Asian surface and in its tropospheric columns. It also underscores the importance of the EAM in the seasonal and interannual variations in foreign influences on surface ozone in East Asia.
Highlights
Tropospheric ozone is a major pollutant, atmospheric oxidant, and greenhouse gas (Monks et al, 2015)
These studies showed that the concentrations of ozone from foreign regions are larger at the East Asian surface in colder seasons (November–April) than in warmer seasons (May–October) (Fiore et al, 2009; Nagashima et al, 2010; Wang et al, 2011; Yoshitomi et al, 2011)
Using a global chemical transport model, Goddard Earth Observing System (GEOS)-Chem, we investigated foreign influences on tropospheric ozone over East Asia
Summary
Tropospheric ozone is a major pollutant, atmospheric oxidant, and greenhouse gas (Monks et al, 2015). Concerning air quality, most previous studies focused on foreign influences on ozone in the lower troposphere or at the surface in East Asia. These studies showed that the concentrations of ozone from foreign regions are larger at the East Asian surface in colder seasons (November–April) than in warmer seasons (May–October) (Fiore et al, 2009; Nagashima et al, 2010; Wang et al, 2011; Yoshitomi et al, 2011). We use a global chemical transport model, GEOS-Chem, to quantify foreign influences on tropospheric ozone in East Asia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.