Abstract

One of the main challenges facing upcoming cosmic microwave background (CMB) experiments will be to distinguish the cosmological signal from foreground contamination. We present a comprehensive treatment of this problem and study how foregrounds degrade the accuracy with which the Boomerang, MAP, and Planck experiments can measure cosmological parameters. Our foreground model includes not only the normalization, frequency dependence, and scale dependence for each physical component, but also variations in frequency dependence across the sky. When estimating how accurately cosmo- logical parameters can be measured, we include the important complication that foreground model parameters (we use about 500) must be simultaneously measured from the data as well. Our results are quite encouraging: despite all these complications, precision measurements of most cosmological param- eters are degraded by less than a factor of 2 for our main foreground model and by less than a factor of 5 in our most pessimistic scenario. Parameters measured though large-angle polarization signals suUer more degradation: up to 5 in the main model and 25 in the pessimistic case. The foregrounds that are potentially most damaging and therefore most in need of further study are vibrating dust emission and point sources, especially those in the radio frequencies. It is well known that E and B polarization contain valuable information about reionization and gravity waves, respectively. However, the cross- correlation between polarized and unpolarized foregrounds also deserves further study, as we —nd that it carries the bulk of the polarization information about most other cosmological parameters. Subject headings: cosmic microwave backgrounddiUuse radiationmethods: numerical ¨ polarization

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.