Abstract
In visual surveillance, robust foreground object detection is an essential step for further processing such as segmentation, tracking, and extraction of a scene's contextual information. Typical approaches continuously update background images and use then for detecting foreground objects. They involve many parameters that should be adjusted according to the situation where surveillance cameras are operating. We propose an algorithm for the robust detection of foreground objects using multiple difference images that requires only one parameter to adjust. We show that the proposed algorithm gives comparable results with less computation time through experimental results using test images with groundtruths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.