Abstract
Streamflow forecasts are updated periodically in real time, thereby facilitating forecast evolution. This study proposes a forecast-skill-based model of forecast evolution that is able to simulate dynamically updated streamflow forecasts. The proposed model applies stochastic models that deal with streamflow variability to generate streamflow scenarios, which represent cases without forecast skill of future streamflow. The model then employs a coefficient of prediction to determine forecast skill and to quantify the streamflow variability ratio explained by the forecast. By updating the coefficients of prediction periodically, the model efficiently captures the evolution of streamflow forecast. Simulated forecast uncertainty increases with increasing lead time; and simulated uncertainty during a specific future period decreases over time. We combine the statistical model with an optimization model and design a hypothetical case study of reservoir operation. The results indicate the significance of forecast skill in forecast-based reservoir operation. Shortage index reduces as forecast skill increases and ensemble forecast outperforms deterministic forecast at a similar forecast skill level. Moreover, an effective forecast horizon exists beyond which more forecast information does not contribute to reservoir operation and higher forecast skill results in longer effective forecast horizon. The results illustrate that the statistical model is efficient in simulating forecast evolution and facilitates analysis of forecast-based decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.