Abstract
The Principal Component Regression model of multiple responses is extended to forccast a continuous-time stochastic process. Orthogonal projection on a subspace of trigonometric functions is applied in order to estimate the principal components using discrete-time observations from a sample of regular curves. The forecasts provided by this approach are compared with classical principal component regression on simulated data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.