Abstract

Factor models have been successfully employed in summarizing large datasets with few underlying latent factors and in building time series forecasting models for economic variables. When the objective is to forecast a target variable y with a large set of predictors x, the construction of the summary of the xs should be driven by how informative on y it is. Most existing methods first reduce the predictors and then forecast y in independent phases of the modeling process. In this paper we present an alternative and potentially more attractive alternative: summarizing x as it relates to y, so that all the information in the conditional distribution of y|x is preserved. These y-targeted reductions of the predictors are obtained using Sufficient Dimension Reduction techniques. We show in simulations and real data analysis that forecasting models based on sufficient reductions have the potential of significantly improved performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.