Abstract

The goal of this article is to evaluate the informational content of sentiment extracted from news articles about the state of the economy. We propose a fine-grained aspect-based sentiment analysis that has two main characteristics: (a) we consider only the text in the article that is semantically dependent on a term of interest (aspect-based) and, (b) assign a sentiment score to each word based on a dictionary that we develop for applications in economics and finance (fine-grained). Our dataset includes six large U.S. newspapers, for a total of over 6.6 million articles and 4.2 billion words. Our findings suggest that several measures of economic sentiment track closely business cycle fluctuations and that they are relevant predictors for four major macroeconomic variables. We find that there are significant improvements in forecasting when sentiment is considered along with macroeconomic factors. In addition, we also find that sentiment matters to explains the tails of the probability distribution across several macroeconomic variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.