Abstract

In this paper we investigate whether accounting for non-pervasive shocks improves the forecast of a factor model. We compare four models on a large panel of US quarterly data: factor models, factor models estimated on selected variables, Bayesian shrinkage, and factor models together with Bayesian shrinkage for the idiosyncratic component. The results of the forecasting exercise show that the four approaches considered perform equally well and produce highly correlated forecasts, meaning that non-pervasive shocks are of no helps in forecasting. We conclude that comovements captured by factor models are informative enough to make accurate forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.