Abstract
Wind serves as natural resources as the solution to minimize global warming and has been commonly used to produce electricity. Because of their uncontrollable wind characteristics, wind speed forecasting is considered one of the best challenges in developing power generation. The Autoregressive Integrated Moving Average (ARIMA), Simple Exponential Smoothing (SES) and a hybrid model combination of ARIMA and SES will be used in this study to predict the wind speed. The mean absolute percentage error (MAPE) and the root mean square error (RMSE) are used as measurement of efficiency. The hybrid model provides a positive outcome for predicting wind speed compare to the single model of ARIMA and SES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.