Abstract

Wind energy is an essential source of renewable energy that has gained popularity in recent years. Accurately forecasting wind energy production is crucial for efficient energy management and distribution. This paper proposes a machine learning-based approach using Support Vector Regression (SVR) and Random Forest Regression (RFR) to forecast wind energy production. The proposed methodology involves data collection, preprocessing, feature selection, model training, optimization, and evaluation. The performance of the models is assessed using mean squared error (MSE), root mean squared error (RMSE), and coefficient of determination (R-squared) metrics. The results indicate that the proposed SVR-RFR model outperforms individual models, achieving a higher accuracy in forecasting wind energy production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.