Abstract

We examine the performance of Kalman filter techniques in forecasting volatility. We find that the simple implementation of an online Kalman filtering procedure that combines commonly used forecasting models with market-based estimates improves the accuracy of volatility forecasts. Furthermore, we demonstrate that the Interacting Multiple Model algorithm, which combines multiple Kalman filters, provides the most accurate volatility forecasts overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.