Abstract
ABSTRACT This study investigates the role of the probability distribution in forecasting the volatility and value-at-risk (VaR) of cryptocurrency returns using generalized auto-regressive conditional heteroskedasticity (GARCH)-type models. We consider GARCH, EGARCH, GJR-GARCH, TGARCH and Realized GARCH models and show that the role of the probability distribution varies across different situations. A skewed and heavy-tailed distribution contributes to better performance in forecasting the VaR; however, it does not improve the accuracy of volatility forecasting. The results help us to better understand the role of the probability distribution in GARCH-type models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.