Abstract
Data containing seasonal patterns, the SARIMA and Bayesian Structural Time Series methods, are time series methods that can be used on this type of data. This research aims to determine the steps of the SARIMA model and Bayesian Structural Time Series, applying the SARIMA model and Structural Bayesians Time Series, get the forecasting results of the SARIMA model and Bayesian Structural Time Series with MAPE measurements. The research method used is a quantitative method applied to data on the number of PT KAI train passengers in the Java region for 2006-2019. The results of this research show that the best model for forecasting the number of PT KAI train passengers in the Java region in 2006-2019 is SARIMA (2,1,0)(0,1,2)[12] with a MAPE value of 4.77% compared to the Bayesian method structural time series [12] namely 5.25%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of The International Conference on Data Science and Official Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.