Abstract

This paper examines the out-of-sample forecasting properties of six different economic uncertainty variables for the growth of the real M2 and real M4 Divisia money series for the U.S. using monthly data. The core contention is that information on economic uncertainty improves the forecasting accuracy. We estimate vector autoregressive models using the iterated rolling-window forecasting scheme, in combination with modern regularisation techniques from the field of machine learning. Applying the Hansen-Lunde-Nason model confidence set approach under two different loss functions reveals strong evidence that uncertainty variables that are related to financial markets, the state of the macroeconomy or economic policy provide additional informational content when forecasting monetary dynamics. The use of regularisation techniques improves the forecast accuracy substantially.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.