Abstract
This study generates nowcasts and forecasts for the growth rate of the gross domestic product in Turkey using 204 daily financial series with mixed data sampling (MIDAS) framework. The daily financial series include commodity prices, equity indices, exchange rates, and global and domestic corporate risk series. Forecasting exercises are also carried out with the daily factors extracted from separate financial data classes and from the whole dataset. The findings of the study suggest that MIDAS regression models and forecast combinations provide advantage in exploiting information from daily financial data compared to the models using simple aggregation schemes. In addition, incorporating daily financial data into the analysis improves the forecasts substantially. These results indicate that both the information content of the financial data and the flexible data-driven weighting scheme of MIDAS regressions play an essential role in forecasting the future state of the Turkish economy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.