Abstract
Scalar time series considered in most studies may be not sufficient to reconstruct the dynamics, while using multivariate time series may demonstrate great advantages over scalar time series if they are available. Multivariate time series are available in the traffic system and we intend to examine the issue for the real data in the traffic system. In this paper, we propose the multivariate predicting method and discuss the prediction performance of multivariate time series by comparison with univariate time series and K-nearest neighbor (KNN) nonparametric regression model. The three kinds of forecast accuracy measure for multivariate predicting method are smaller than those for the other two methods in all cases, which suggest the predicting results for traffic time series by multivariate predicting method are better and more accurate than those based on univariate time series and KNN model. It demonstrates that the proposed multivariate predicting method is more successful in predicting the traffic time series than univariate predicting method and KNN method. The multivariate predicting method has a broad application prospect on prediction because of its advantage on recovering the dynamics of nonlinear system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.