Abstract

In the past few decades, international tourism has grown rapidly and has become a very interesting topic in tourism research. Taiwan, acting as a citizen in the global community, improved traveling facilities, and governments’ strong promotion has drawn more and more visitors to visit Taiwan. This study tries to build the forecasting model of visitors to Taiwan using three commonly adopted ARIMA, artificial neural networks (ANNs), and multivariate adaptive regression splines (MARS). In order to evaluate the appropriateness of the proposed modeling approaches, the dataset of monthly visitors to Taiwan was used as the illustrative example. Analytic results demonstrated that ARIMA outperformed ANNs and MARS approaches in terms of RMSE, MAD, and MAPE and provided effective alternatives for forecasting tourism demand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.