Abstract

The prediction of the stock price index is a challenge even with advanced deep-learning technology. As a result, the analysis of volatility, which has been widely studied in traditional finance, has attracted attention among researchers. This paper presents a new forecasting model that combines asymmetric fractality and deep-learning algorithms to predict a one-day-ahead absolute return series, the proxy index of stock price volatility. Asymmetric Hurst exponents are measured to capture the asymmetric long-range dependence behavior of the S&P500 index, and recurrent neural network groups are applied. The results show that the asymmetric Hurst exponents have predictive power for one-day-ahead absolute return and are more effective in volatile market conditions. In addition, we propose a new two-stage forecasting model that predicts volatility according to the magnitude of volatility. This new model shows the best forecasting performance regardless of volatility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.