Abstract

Transportation energy demand has a significant impact on worldwide energy consumption and greenhouse gas emissions. Accurate transportation energy demand predictions can help policymakers develop and implement successful energy policies and strategies. In this study, a novel approach to predict transportation energy demand using the Artificial Neural Network (ANN) based on the Improved Red Fox Optimizer (IRFO) has been suggested. The proposed method utilizes the ANN model to solve the complex nonlinear relationships between transportation energy demand and its effective parameters including Gross Domestic Product (GDP), population, and vehicle numbers. Also, the IRFO algorithm was utilized to modify the ANN model's parameters to improve the prediction accuracy. The experimental findings demonstrate the ANN-IRFO model performs better than the other method in terms of accuracy and effectiveness. It predicts the growth of GDP, population, and vehicles number by 5.5 %, 4.8 %, and 4.2 %, respectively. The findings demonstrate that the suggested method can provide accurate forecasts for transportation energy demand, which can help decision-makers to make informed decisions and policies regarding energy management and sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.