Abstract
This paper is the first to study the forecasting of the term structure of Chinese Treasury yields. We extend the Nelson–Siegel class of models to estimate and forecast the term structure of Chinese Treasury yields. Our empirical analysis shows that the models fit the data very well, and that more flexible specifications dramatically improve in-sample fitting performance. In particular, the model which enhances slope fitting is the best in capturing the Chinese yield curve dynamics. We also demonstrate that time-varying factors of the models may be interpreted as the level, slope and curvature of the yield curve. Furthermore, we use five dynamic processes for the time-varying factors to forecast the term structure at both short and long horizons. Our forecasts are much more accurate than the random walk, the Cochrane–Piazzesi regression and the AR(1) benchmark models at long horizons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.