Abstract

Purpose. To propose a method of comparative evaluation of technical efficiency of mobile workover rig by the criterion of life cycle cost. Methodology. The proposed method is based on the determination of the specific discounted costs related to the technical condition of the machine, spent on a conventional unit of work performed. It combines economic and technical indicators that characterize the performance of the machine. This makes it possible to indirectly assess its technical efficiency. Procedures for obtaining and processing input information, analytical dependences for establishing the components of the mathematical model and its solution are shown. Findings. Using the proposed method, a comparison is performed of three conventional similar models of workover rigs, which are positioned as more reliable, and two which are less reliable and cheaper. Their indicators are formed as a weighted average based on the analysis of an array of statistical information. The obtained values were used to indirectly determine the specific discounted costs for the maintenance of rigs in working order for a period of time; the rigs are characterized by the indicator of technical efficiency. The comparison of these indicators for similar workover rigs is performed for such characteristic points as the moment of balancing of expenses, expenses for the forecasted period of operation, the periods of operation at which expenses are balanced. It is confirmed that usually the gain from the greater durability far exceeds the reduction of the economic effect of the rise in price of the machine. Originality. The proposed method for engineering forecasting of technical efficiency of technological machines using values of economic and technical indicators available to engineers of the petroleum industry. Practical value. This assessment is intended to objectively compare several analogue models and make a reasonable choice of a more efficient technological machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.