Abstract

A new approach to forecasting the year-to-year increment of rainfall in North China in July–August (JA) is proposed. DY is defined as the difference of a variable between the current year and the preceding year (year-to-year increment). NR denotes the seasonal mean precipitation rate over North China in JA. After analyzing the atmospheric circulation anomalies associated with the DY of NR, five key predictors for the DY of NR have been identified. The prediction model for the DY of NR is established by using multi-linear regression method and the NR is obtained (the current forecasted DY of NR added to the preceding observed NR). The prediction model shows a high correlation coefficient (0.8) between the simulated and the observed DY of NR throughout period 1965–1999, with an average relative root mean square error of 19% for the percentage of precipitation rate anomaly over North China. The prediction model makes a hindcast for 2000–2007, with an average relative root mean square error of 21% for the percentage of precipitation rate anomaly over North China. The model reproduces the downward trend of the percentage of precipitation rate anomaly over North China during 1965–2006. Because the current operational prediction models of the summer precipitation have average forecast scores of 60%–70%, it has been more difficult to forecast the summer rainfall over North China. Thus this new approach for predicting the year-to-year increment of the summer precipitation (and hence the summer precipitation itself) has the potential to significantly improve operational forecasting skill for summer precipitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.