Abstract
AbstractWe develop a new statistical constraint to improve the stock return forecasting performance of predictive models. This constraint uses a new objective function that combines the Huber loss function with the Ridge penalty. Out‐of‐sample results indicate that our constraint improves the predictive ability of the univariate models. The constrained univariate models significantly outperform the historical average benchmark model assuming no predictability. The forecast improvement based on the new constraint is also evident for multivariate information methods including forecast combination and diffusion index. The model is capable of capturing time‐varying risk which serves as the potential economic explanation of the improved return predictability. Our results are robust to different evaluation subsamples, validation sample lengths, and different risk aversion coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.