Abstract
The immense growth of the population generates a polluted environment that must be managed to ensure environmental sustainability, versatility and efficiency in our everyday lives. Particularly, the municipality is unable to cope with the increase in garbage, and many urban areas are becoming increasingly difficult to manage. The advancement of technology allows researchers to transmit data from municipal bins using smart IoT (Internet of Things) devices. These bin data can contribute to a compelling analysis of waste management instead of depending on the historical dataset. Thus, this study proposes forecasting models comprising of 1D CNN (Convolutional Neural Networks) long short-term memory (LSTM), gated recurrent units (GRU) and bidirectional long short-term memory (Bi-LSTM) for time series prediction of public bins. The execution of the models is evaluated by Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Coefficient determination (R2) and Root Mean Squared Error (RMSE). For different numbers of epochs, hidden layers, dense layers, and different units in hidden layers, the RSME values measured for 1D CNN, LSTM, GRU and Bi-LSTM models are 1.12, 1.57, 1.69 and 1.54, respectively. The best MAPE value is 1.855, which is found for the LSTM model. Therefore, our findings indicate that LSTM can be used for bin emptiness or fullness prediction for improved planning and management due to its proven resilience and increased forecast accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.