Abstract

AbstractThe paper uses the Gibbs sampling technique to estimate a heteroscedastic Bayesian Vector Error Correction Model (BVECM) of the South African economy for the period 1970:1‐2000:4, and then forecasts GDP, consumption, investment, short and long term interest rates, and the CPI over the period of 2001:1 to 2005:4. We find that a tight prior produces relatively more accurate forecasts than a loose one. The out‐of‐sample‐forecast accuracy resulting from the Gibbs sampled BVECM is compared with those generated from a Classical VECM and a homoscedastic BVECM. The homoscedastic BVECM is found to produce the most accurate out of sample forecasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.