Abstract

This paper aims to better manage the reverse supply chain of the automotive industry in the context of green, circular, and sustainable development by predicting the number of end-of-life vehicles to be recycled through the establishment of a multi-factor model. The prediction of the number of end-of-life vehicles to be recycled in this paper will support the end-of-life vehicle recycling industry in terms of recycling management and investment decision-making and provide a reference for the formulation and implementation of policies relating to end-of-life vehicles. To solve the problems posed by nonlinear characteristics and uncertainty in the number of end-of-life vehicles recycled, and deal with the multiple factors influencing the recycling number, this paper presents a combined prediction model consisting of a grey model, exponential smoothing and an artificial neural network optimized by the particle swarm optimization (PSO) algorithm. Using Shanghai's end-of-life vehicle reverse logistics industry as an example, this study selects historical data about end-of-life vehicles recycled in Shanghai during the 2005–2016 period, identifies multiple influential factors, and validates the effectiveness and feasibility of the prediction model through empirical research. This paper proposes an effective prediction model for end-of-life vehicle industry managers, researchers, and regulators dealing with the industry's common challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.