Abstract

Nonlinear dynamical systems in reality are often under environmental influences that are time-dependent. To assess whether such a system can perform as desired or as designed and is sustainable requires forecasting its future states and attractors based solely on time series. We propose a viable solution to this challenging problem by resorting to the compressive-sensing paradigm. In particular, we demonstrate that, for a dynamical system whose equations are unknown, a series expansion in both dynamical and time variables allows the forecasting problem to be formulated and solved in the framework of compressive sensing using only a few measurements. We expect our method to be useful in addressing issues of significant current concern such as the sustainability of various natural and man-made systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.