Abstract
In this paper, forecasting of the Electric Vehicle (EV) charging load has been based on two different datasets: data from the customer profile (referred to as charging record) and data from outlet measurements (referred to as station record). Four different prediction algorithms namely Time Weighted Dot Product based Nearest Neighbor (TWDP-NN), Modified Pattern Sequence Forecasting (MPSF), Support Vector Regression (SVR), and Random Forest (RF) are applied to both datasets. The corresponding speed, accuracy, and privacy concerns are compared between the use of the charging records and station records. Real world data compiled at the outlet level from the UCLA campus parking lots are used. The results show that charging records provide relatively faster prediction while putting customer privacy in jeopardy. Station records provide relatively slower prediction while respecting the customer privacy. In general, we found that both datasets generate comparable prediction error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.