Abstract

This paper studies the performance of the GARCH model and two of its non-linear modifications to forecast China's weekly stock market volatility. The models are the Quadratic GARCH and the Glosten, Jagannathan and Runkle models which have been proposed to describe the often observed negative skewness in stock market indices. It is found that the QGARCH model is best when the estimation sample does not contain extreme observations such as the stock market crash, and that the GJR model cannot be recommended for forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.