Abstract
Approaches for predicting financial markets, including conventional statistical methods and recent deep learning methods, have been investigated in many studies. However, financial time series data (e.g., daily stock market index) contain noises that prevent stable predictive model learning. Using these noised data in predictions results in performance deterioration and time lag. This study proposes padding-based Fourier transform denoising (P-FTD) that eliminates the noise waveform in the frequency domain of financial time series data and solves the problem of data divergence at both ends when restoring to the original time series. Experiments were conducted to predict the closing prices of S&P500, SSE, and KOSPI by applying data, from which noise was removed by P-FTD, to different deep learning models based on time series. Results show that the combination of the deep learning models and the proposed denoising technique not only outperforms the basic models in terms of predictive performance but also mitigates the time lag problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.