Abstract

This study combines wavelet-based feature extractions with kernel partial least square (PLS) regression for international stock index forecasting. Wavelet analysis is utilized as a preprocessing step to decompose and extract most important time scale features from high dimensional input data. Owing to the high dimensionality and heavy multi-collinearity of the input data, a kernel PLS regression model is employed to create the most efficient subspace that keeping maximum covariance between inputs and outputs, and perform the final forecasting. Compared with neural networks, pure SVMs or traditional GARCH models, the proposed model performs best. The root-mean-squared forecasting errors are significantly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.