Abstract

The performance of different models and procedures for forecasting aggregated May–July streamflow for the Churchill Falls basin on the Québec-Labrador peninsula is compared. The models compared have different lead times and include an autoregressive model using only past streamflow data, an autoregressive with exogenous input model utilizing both past streamflow and precipitation, and a linear regression model using the principal components of exogenous measures of atmospheric circulation inferred from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis project. The forecast skills of the different approaches are compared using a variety of measures of performance. The results indicate that relatively accurate forecasts using only measures of atmospheric circulation can be issued as early as in December of the prior year. A multimodel combination approach is found to be more effective than the use of a single forecast model. In addition, it is concluded that forecasting models utilizing atmospheric circulation data are useful, especially for basins where hydroclimatic observations are scarce and for basins where flows and other hydroclimatic variables are not strongly autocorrelated (do not depend on their past).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.