Abstract
This study involved the development of an approach to forecast house prices and trading volumes across multiple areas simultaneously. Spatially correlated targets, such as house prices, can be predicted more accurately by leveraging the correlations across adjacent areas. A multi-output recurrent neural network, a deep learning algorithm specifically developed to analyze sequence data, was utilized to forecast the house prices and trading volumes in the four chosen study areas. The forecasting accuracy of future house prices in one of the four geographical areas clearly improved; this area was found to be a price-lagging area, and the forecasting accuracy of this area significantly increased by exploiting the information of a price-leading area. As for the prediction of trading volumes, the difference in performance between the multi-output recurrent neural network and conventional models was very small. The results of this study are expected to promote the use of deep learning to predict the housing market activity through a simultaneous forecasting framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Strategic Property Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.