Abstract
Solar energy is one of the fastest growing sources of electricity generation. Forecasting solar stock prices is important for investors and venture capitalists interested in the renewable energy sector. This paper uses tree-based machine learning methods to forecast the direction of solar stock prices. The feature set used in prediction includes a selection of well-known technical indicators, silver prices, silver price volatility, and oil price volatility. The solar stock price direction prediction accuracy of random forests, bagging, support vector machines, and extremely randomized trees is much higher than that of logit. For a forecast horizon of between 8 and 20 days, random forests, bagging, support vector machines, and extremely randomized trees achieve a prediction accuracy greater than 85%. Although not as prominent as technical indicators like MA200, WAD, and MA20, oil price volatility and silver price volatility are also important predictors. An investment portfolio trading strategy based on trading signals generated from the extremely randomized trees stock price direction prediction outperforms a simple buy and hold strategy. These results demonstrate the accuracy of using tree-based machine learning methods to forecast the direction of solar stock prices and adds to the broader literature on using machine learning techniques to forecast stock prices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The North American Journal of Economics and Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.