Abstract

This paper develops a novel short-term load forecasting model that hybridizes several machine learning methods, such as support vector regression (SVR), grey catastrophe (GC (1,1)), and random forest (RF) modeling. The modeling process is based on the minimization of both SVR and risk. GC is used to process and extract catastrophe points in the long term to reduce randomness. RF is used to optimize forecasting performance by exploiting its superior optimization capability. The proposed SVR-GC-RF model has higher forecasting accuracy (MAPE values are 6.35% and 6.21%, respectively) using electric loads from Australian-Energy-Market-Operator; it can provide analytical support to forecast electricity consumption accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call