Abstract

Forecasting severe convective weather remains one of the most challenging tasks facing operational meteorology today, especially in the mid-latitudes, where severe convective storms occur most frequently and with the greatest impact. The forecast difficulties reflect, in part, the many different atmospheric processes of which severe thunderstorms are a by-product. These processes occur over a wide range of spatial and temporal scales, some of which are poorly understood and/or are inadequately sampled by observational networks. Therefore, anticipating the development and evolution of severe thunderstorms will likely remain an integral part of national and local forecasting efforts well into the future. Modern severe weather forecasting began in the 1940s, primarily employing the pattern recognition approach throughout the 1950s and 1960s. Substantial changes in forecast approaches did not come until much later, however, beginning in the 1980s. By the start of the new millennium, significant advances in the understanding of the physical mechanisms responsible for severe weather enabled forecasts of greater spatial and temporal detail. At the same time, technological advances made available model thermodynamic and wind profiles that supported probabilistic forecasts of severe weather threats. This article provides an updated overview of operational severe local storm forecasting, with emphasis on present-day understanding of the mesoscale processes responsible for severe convective storms, and the application of recent technological developments that have revolutionized some aspects of severe weather forecasting. The presentation, nevertheless, notes that increased understanding and enhanced computer sophistication are not a substitute for careful diagnosis of the current meteorological environment and an ingredients-based approach to anticipating changes in that environment; these techniques remain foundational to successful forecasts of tornadoes, large hail, damaging wind, and flash flooding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call