Abstract
Scenario forecasting methods have been widely studied in recent years to cope with the wind power uncertainty problem. The main difficulty of this problem is to accurately and comprehensively reflect the time-series characteristics and spatial-temporal correlation of wind power generation. In this paper, the marginal distribution model and the dependence structure are combined to describe these complex characteristics. On this basis, a scenario generation method for multiple wind farms is proposed. For the marginal distribution model, the autoregressive integrated moving average-generalized autoregressive conditional heteroskedasticity-t (ARIMA-GARCH-t) model is proposed to capture the time-series characteristics of wind power generation. For the dependence structure, a time-varying regular vine mixed Copula (TRVMC) model is established to capture the spatial-temporal correlation of multiple wind farms. Based on the data from 8 wind farms in Northwest China, sufficient scenarios are generated. The effectiveness of the scenarios is evaluated in 3 aspects. The results show that the generated scenarios have similar fluctuation characteristics, autocorrelation, and crosscorrelation with the actual wind power sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.