Abstract

Flooding and erosion will pose increasing challenges to urban settlements and critical infrastructure, such as roads and power grids in the future. Improved projections on the impact of climate change to critical infrastructure are essential to assist future planning. This paper uses hydro-sedimentary modelling to predict river erosion threats to electricity transmission infrastructure in an urbanised river valley under multiple increasing flow magnitude scenarios. We use a coupled hydrodynamic and landscape evolution model, CAESAR-Lisflood, to simulate river channel changes along a reach of the River Mersey, UK from the present day to 2050. A range of synthetic flow scenarios, based on recent hydrological records, was used in the model ranging from ‘no change’ up to a flow with 50% higher magnitude. The results revealed: (1) riverbank erosion will pose significant threats to several transmission towers located along the river, requiring intervention to avoid destabilisation by the moving channel; (2) the total area of floodplain erosion and deposition ≥ 0.5 m deep was positively related to increasing projected flow magnitudes. However, through running a ‘low’ and ‘high’ erosion version of the model, the simulations revealed these threats were most sensitive to the calibration of the erosion component of the model, illustrating the challenges and uncertainty in forecasting long-term river channel change; and (3) how long-term simulations can assist in adaptation planning for electricity transmission towers. Further reach- and catchment-scale modelling will be necessary to determine the timings of large floods more accurately, which produce the most significant erosion and deposition events, and to evaluate the efficacy of protections to transmission towers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call