Abstract

In this study, we forecast the realized volatility of the S&P 500 index using the heterogeneous autoregressive model for realized volatility (HAR-RV) and its various extensions. Our models take into account the time-varying property of the models’ parameters and the volatility of realized volatility. A dynamic model averaging (DMA) approach is used to combine the forecasts of the individual models. Our empirical results suggest that DMA can generate more accurate forecasts than individual model in both statistical and economic senses. Models that use time-varying parameters have greater forecasting accuracy than models that use the constant coefficients. The superiority of time-varying parameter models is also found in volatility density forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.