Abstract
Dairy commodity prices have become more volatile over the last 10–11 yr. The aim of this paper was to produce reliable price forecasts for the most frequently traded dairy commodities. Altogether five linear and nonlinear time series models were applied. The analysis reveals that prices of dairy commodities reached a structural breakpoint in 2006/2007. The results also show that a combination of linear and nonlinear models is useful in forecasting commodity prices. In this study, the price of cheese is the most difficult to forecast, but a simple autoregressive (AR) model performs reasonably well after 12 mo. Similarly, for butter the AR model performs the best, while for skimmed milk powder (Smp), whole milk powder (Wmp) and whey powder (Whp) the nonlinear methods are the most accurate. However, few of the differences between models are significant according to the Diebold–Mariano (DM) test. The findings could be of interest to the whole dairy industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.