Abstract
AbstractThe long human lifespan enables long run forecasts of population size and age distribution. New methods include biodemographic research on upper limits to life expectancy and incorporation of early experiences affecting later life mortality such as smoking, obesity, and childhood health shocks. Some fertility forecasts incorporate education and quantum‐tempo insights. Statistical time series and Bayesian methods generate probabilistic forecasts. Yet recent decades have brought surprising changes in the economy, natural environment, and vital rates. In these changing circumstances we need new methods and the increasing use of probabilistic models and Bayesian methods incorporating outside information. The increasing use of microsimulation combined with aggregate forecasting methods is a very promising development enabling more detailed and heterogeneous forecasts. Some new uses of stochastic forecasts are interesting in themselves. Probabilistic mortality forecasts are used in finance and insurance, and a new Longevity Swap industry has been built on them. Random sample paths used to generate stochastic population forecasts can stress‐test public pension designs for fiscal stability and intergenerational equity. Population forecasting a few decades ago was a dull backwater of demographic research, but now it is increasingly important and is full of intellectual and technical challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.